Title | A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. |
Publication Type | Journal Article |
Year of Publication | 2020 |
Authors | De Micheli AJ, Spector JA, Elemento O, Cosgrove BD |
Journal | Skelet Muscle |
Volume | 10 |
Issue | 1 |
Pagination | 19 |
Date Published | 2020 Jul 06 |
ISSN | 2044-5040 |
Abstract | Single-cell RNA-sequencing (scRNA-seq) facilitates the unbiased reconstruction of multicellular tissue systems in health and disease. Here, we present a curated scRNA-seq dataset of human muscle samples from 10 adult donors with diverse anatomical locations. We integrated ~ 22,000 single-cell transcriptomes using Scanorama to account for technical and biological variation and resolved 16 distinct populations of muscle-resident cells using unsupervised clustering of the data compendium. These cell populations included muscle stem/progenitor cells (MuSCs), which bifurcated into discrete "quiescent" and "early-activated" MuSC subpopulations. Differential expression analysis identified transcriptional profiles altered in the activated MuSCs including genes associated with aging, obesity, diabetes, and impaired muscle regeneration, as well as long non-coding RNAs previously undescribed in human myogenic cells. Further, we modeled ligand-receptor cell-communication interactions and observed enrichment of the TWEAK-FN14 pathway in activated MuSCs, a characteristic signature of muscle wasting diseases. In contrast, the quiescent MuSCs have enhanced expression of the EGFR receptor, a recognized human MuSC marker. This work provides a new benchmark reference resource to examine human muscle tissue heterogeneity and identify potential targets in MuSC diversity and dysregulation in disease contexts. |
DOI | 10.1186/s13395-020-00236-3 |
Alternate Journal | Skelet Muscle |
PubMed ID | 32624006 |
PubMed Central ID | PMC7336639 |
Grant List | R01AG058630 / AG / NIA NIH HHS / United States Grant for Junior Faculty / / American Federation for Aging Research / P200A150273 / / U.S. Department of Education / |